The Data Science Course: Complete Data Science Bootcamp 2025

Categories: Data Science
Wishlist Share
Share Course
Page Link
Share On Social Media

About Course

⭐️ Course Contents ⭐️ ⌨️ Part 1: Data Science: An Introduction: Foundations of Data Science

  • Welcome (1.1)
  • Demand for Data Science (2.1)
  • The Data Science Venn Diagram (2.2)
  • The Data Science Pathway (2.3)
  • Roles in Data Science (2.4)
  • Teams in Data Science (2.5)
  • Big Data (3.1)
  • Coding (3.2)
  • Statistics (3.3)
  • Business Intelligence (3.4)
  • Do No Harm (4.1)
  • Methods Overview (5.1)
  • Sourcing Overview (5.2)
  • Coding Overview (5.3)
  • Math Overview (5.4)
  • Statistics Overview (5.5)
  • Machine Learning Overview (5.6)
  • Interpretability (6.1)
  • Actionable Insights (6.2)
  • Presentation Graphics (6.3)
  • Reproducible Research (6.4)
  • Next Steps (7.1)

⌨️ Part 2: Data Sourcing: Foundations of Data Science (1:39:46)

  • Welcome (1.1)
  • Metrics (2.1)
  • Accuracy (2.2)
  • Social Context of Measurement (2.3)
  • Existing Data (3.1)
  • APIs (3.2)
  • Scraping (3.3)
  • New Data (4.1)
  • Interviews (4.2)
  • Surveys (4.3)
  • Card Sorting (4.4)
  • Lab Experiments (4.5)
  • A/B Testing (4.6)
  • Next Steps (5.1)

⌨️ Part 3: Coding (2:32:42)

  • Welcome (1.1)
  • Spreadsheets (2.1)
  • Tableau Public (2.2)
  • SPSS (2.3)
  • JASP (2.4)
  • Other Software (2.5)
  • HTML (3.1)
  • XML (3.2)
  • JSON (3.3)
  • R (4.1)
  • Python (4.2)
  • SQL (4.3)
  • C, C++, & Java (4.4)
  • Bash (4.5)
  • Regex (5.1)
  • Next Steps (6.1)

⌨️ Part 4: Mathematics (4:01:09)

  • Welcome (1.1)
  • Elementary Algebra (2.1)
  • Linear Algebra (2.2)
  • Systems of Linear Equations (2.3)
  • Calculus (2.4)
  • Calculus & Optimization (2.5)
  • Big O (3.1)
  • Probability (3.2)

⌨️ Part 5: Statistics (4:44:03)

  • Welcome (1.1)
  • Exploration Overview (2.1)
  • Exploratory Graphics (2.2)
  • Exploratory Statistics (2.3)
  • Descriptive Statistics (2.4)
  • Inferential Statistics (3.1)
  • Hypothesis Testing (3.2)
  • Estimation (3.3)
  • Estimators (4.1)
  • Measures of Fit (4.2)
  • Feature Selection (4.3)
  • Problems in Modeling (4.4)
  • Model Validation (4.5)
  • DIY (4.6)
  • Next Step (5.1)
Show More

Course Content

Part 1: Data Science: An Introduction: Foundations of Data Science

  • INTRODUCTION
    01:39:46

Part 2: Data Sourcing: Foundations of Data Science

Part 3: Coding

Part 4: Mathematics

Part 5: Statistics

Student Ratings & Reviews

No Review Yet
No Review Yet